Extreme Value of Functions

- -One of the most useful things we can use the derivative for.
- -"What is the most effective dose of medicine?"

Absolute Extreme Values

Let f be a function with domain \mathcal{D} . Then f(c) is the:

absolute maximum value on D iff
$$f(x) \le f(c)$$
 for all x in D .

absolute minimum value on D iff
$$f(x) \ge f(c)$$
 for all x in D .

-Absolute or global max and min values are also called absolute extrema.

Example

-Functions with the same function rule can have different extrema depending on the domain.

Function Rule	Domain D	Absolute Extrema
$y = x^2$	$\left(-\infty,\infty\right)$	No abs. max abs. min of 0 at $x = 0$
$y = x^2$	[0,2]	abs max of 4 at $x = 2$ abs min of 0 at $x = 0$
$y = x^2$	(0,2]	abs. max of 4 at $x = 2$ No abs. min.
$y = x^2$	(0,2)	No abs extrema

-A list of local extrema will automatically include absolute extrema if there are any.

Finding Extreme Values

-Functions have local extreme values if f' is 0 or f' does not exist.

Theorem-Local Extreme Values

-If a function f has a local max value or a local min value at an interior point c of its domain, and f' exist at c then

$$f'(c) = 0$$

Definition-Critical Point

-A point in the interior of the domain of a function f at which f' = 0 or f' does not exist is a <u>critical point</u> of f.

Example-Finding Absolute Extrema

-Find the abs. max and min of $f(x) = x^{2/3}$ on [-2,3].

$$f'(x) = \frac{2}{3}x^{-1/3} = \frac{2}{3\sqrt[3]{x}}$$

- -The derivative has no zeros but is undefined at x = 0.
- -We must consider the one critical point and the endpoints:

Critical point value:
$$f(0) = 0$$

Endpoint values:
$$f(-2) = (-2)^{2/3} = \sqrt[3]{4}$$

$$f(3) = \left(3\right)^{2/3} = \sqrt[3]{9}$$

- -We can see from this that the functions abs. max value is $\sqrt[3]{9} \approx 2.08$ and occurs at the right endpoint x = 3.
- -The abs. min value is 0 and occurs at the interior point x = 0.
- -Graph to confirm.

Example-Finding Extreme Values

$$f(x) = \frac{1}{\sqrt{4 - x^2}}$$

- -The function is only defined on $4-x^2>0$ so the domain is $\left(-2,2\right)$.
- -The domain as no endpoints.
- -Find the derivative

$$f(x) = \frac{1}{\sqrt{4-x^2}} = (4-x^2)^{-1/2}$$

$$f'(x) = -\frac{1}{2}(4-x^2)^{-3/2}(-2x) = \frac{x}{(4-x^2)^{3/2}}$$

-The only critical point in the domain $\left(-2,2\right)$ is $\varkappa=0$.

$$f(0) = \frac{1}{\sqrt{4 - (0)^2}} = \frac{1}{2}$$

- -This is the only candidate for an extreme value.
- -To tell whether 1/2 is an extreme value examine the function

$$f(x) = \frac{1}{\sqrt{4 - x^2}}$$

- -As x moves away from zero on either side the denominator gets smaller, the value of f increases.
- -We have a min value at x = 0, the min is absolute.
- -Graph to confirm.