Extreme Value of Functions

-One of the most useful things we can use the derivative for.
-"What is the most effective dose of medicine?"

Absolute Extreme Values

Let f be a function with domain D. Then $f(c)$ is the:
absolute maximum value on D iff $f(x) \leq f(c)$ for all x in D.
absolute minimum value on D iff $f(x) \geq f(c)$ for all x in D.
-Absolute or global max and min values are also called absolute extrema.

Example

-Functions with the same function rule can have different extrema depending on the domain.

Function Rule	Domain D	Absolute Extrema
$y=x^{2}$	$(-\infty, \infty)$	No abs. max abs. min of 0 at $x=0$
$y=x^{2}$	$[0,2]$	abs max of 4 at $x=2$ abs min of 0 at $x=0$
$y=x^{2}$	$(0,2]$	abs. max of 4 at $x=2$ No abs. min.
$y=x^{2}$	$(0,2)$	No abs extrema

-A list of local extrema will automatically include absolute extrema if there are any.

Finding Extreme Values

-Functions have local extreme values if f^{\prime} is 0 or f^{\prime} does not exist.

Theorem-Local Extreme Values

-If a function f has a local max value or a local min value at an interior point c of its domain, and f^{\prime} exist at c then

$$
f^{\prime}(c)=0
$$

Definition-Critical Point

-A point in the interior of the domain of a function f at which $f^{\prime}=0$ or f^{\prime} does not exist is a critical point of f.

Example-Finding Absolute Extrema

-Find the abs. max and min of $f(x)=x^{2 / 3}$ on $[-2,3]$.

$$
f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 \sqrt[3]{x}}
$$

-The derivative has no zeros but is undefined at $x=0$.
-We must consider the one critical point and the endpoints:
Critical point value: $f(0)=0$

Endpoint values: $f(-2)=(-2)^{2 / 3}=\sqrt[3]{4}$

$$
f(3)=(3)^{2 / 3}=\sqrt[3]{9}
$$

-We can see from this that the functions abs. max value is $\sqrt[3]{9} \approx 2.08$ and occurs at the right endpoint $x=3$.
-The abs. min value is 0 and occurs at the interior point $x=0$.
-Graph to confirm.

Example-Finding Extreme Values

$$
f(x)=\frac{1}{\sqrt{4-x^{2}}}
$$

-The function is only defined on $4-x^{2}>0$ so the domain is $(-2,2)$.
-The domain as no endpoints.
-Find the derivative

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{4-x^{2}}}=\left(4-x^{2}\right)^{-1 / 2} \\
& f^{\prime}(x)=-\frac{1}{2}\left(4-x^{2}\right)^{-3 / 2}(-2 x)=\frac{x}{\left(4-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

-The only critical point in the domain $(-2,2)$ is $x=0$.

$$
f(0)=\frac{1}{\sqrt{4-(0)^{2}}}=\frac{1}{2}
$$

-This is the only candidate for an extreme value.
-To tell whether $1 / 2$ is an extreme value examine the function

$$
f(x)=\frac{1}{\sqrt{4-x^{2}}}
$$

-As x moves away from zero on either side the denominator gets smaller, the value of f increases.
-We have a min value at $x=0$, the min is absolute.
-Graph to confirm.

